Power Planning Briefing: Council's Power Planning Process

Howard Schwartz, PhD NWPCC/ WA Commerce-Energy July 30, 2010

Outline

- Demand and conservation assessment
 - Generating resources
 - Portfolio building

Council's Power Planning Process

Council's Power Planning Process

Demand forecast and Conservation Interface

Basic Building Blocks of long-term Forecasting Model

For each enduse in each sector consumption is determined in part by:

- Number of Units (A)
- Efficiency choices (B)
- Fuel choice (C)

Energy use by an enduse = A * B * C

Number of Units (A)

- Driven by the economic forecast
 - Number of Existing home
 - Number of New Homes (Single, Multi, Manuf.)
 - Square footage of existing commercial buildings
 - Square footage of new commercial buildings
 - Level of production from industrial, agricultural and mining firms
 - Income of residential sector
- Source of information: (Global Insight and in-house analysis)
- Review: by State economists and Demand Forecasting Advisory Committee

Fuel Efficiency Choices (B)

Consumer choice that is critical to the energy decision making process is the Efficiency/capital cost trade-off

Trade-off between high up-front costs and high operating cost.

If a very high efficiency water heater is purchased, the capital cost will be large, however, the operating costs in the future will be lower than with a lower efficiency water heater.

Source of information: Various sources and studies (LBL, DOE,...)

Review process: Demand Forecast Advisory Group and In-house

Residential Hot Water Heating Efficiency Curve

Fuel Choice (C)

- Deciding on fuel source on the basis of relative cost of fuels, cost factors considered include:
 - Capital Cost
 - Operation and maintenance cost
 - Non-price factors such as customer preference for one fuel over another

Six Step Process for Estimating Efficiency Potential

- Step 1 Estimate Technical Potential on a <u>per</u> <u>application</u> basis
- Step 2 Estimate Economic Potential on a <u>per</u> <u>application</u> basis
- Step 3 Estimate number of <u>applicable units</u>
- Step 4 Estimate Technical Potential for <u>all</u> applicable units
- Step 5 Estimate Economic Potential for <u>all</u> applicable units
- Step 6 Estimate Realizable Potential for <u>all</u> realistically achievable units

The Basic Formula

Achievable Potential =

Number Units * Cost-Effective kWh per Unit * Market Penetration

Number Homes
Floor Area of Retail
Number of TVs
Acres Irrigated
Pounds Steel

(kWh/Unit at <u>Current Efficiency</u> – kWh/Unit at <u>Cost-Effectiveness Limit of Efficiency</u>)

<u>Current Efficiency</u> is adjusted for adopted codes & standards and stock turnover (Frozen Efficiency)

Fraction realistically

achievable over time

Cost-Effective Limit of Efficiency is estimated from Portfolio Model Results. It is based on the cost of the next lowest cost resource available to meet load.

Retrofit Commercial Lighting: F96T12 to T8HP Installation of high efficiency electric resistance water heater Retrofit Commercial Lighting: F96T12HO to T8HP-4 Installation of high efficiency electric heat pump water heater Retrofit Commercial Lighting: F96T12VHO to T8HP-4 Installation of high efficiency electric solar water heater Retrofit Commercial Lighting: T8-2 to T8HP-2 Installation of flow control devices (showerhead/aerators) Installation of pipe insulation Installation of waste water heat recovery system Manufactured/Mobile Homes New Shell Measures w/Forced Air Retrofit Commercial Lighting: T8-3 to T8HP-2 Retrofit Commercial Lighting: T8-4 to T8HP-3 Retrofit Commercial Lighting: MH to MHPS Retrofit Commercial Lighting: Med MH to T8HP Furnace Heating Zone 1 Retrofit Commercial Lighting: Large MH to T5HO Manufactured/Mobile Homes New Shell Measures w/Forced Air Furnace Heating Zone 2 Retrofit Commercial Lighting: Small MH to CF-R Manufactured/Mobile Homes New Shell Measures w/Forced Air Retrofit Commercial Lighting: INC to CMH Furnace Heating Zone 3 Retrofit Commercial Lighting: INC to CFL Manufactured/Mobile Homes New Shell Measures w/Heat Pump Retrofit Commercial Lighting: MR to MR/IR Heating Zone 1 Top Daylighting: Linear Fluorescent 3-Step Dim Manufactured/Mobile Homes New Shell Measures w/Heat Pump Top Daylighting: Linear Fluorescent Continuous Dim Heating Zone 2 Top Daylighting: Metal Halide Base 1-Step Dim Manufactured/Mobile Homes New Shell Measures w/Heat Pump Top Daylighting: Six permutations of control density & geometry Heating Zone 3 Site Built New Shell Measures w/Baseboard Heating Equipment Zone 1 ECM on VAV Boxes-New Site Built New Shell Measures w/Baseboard Heating Equipment Zone 2 7.5 tons EER 10.1 to 11.0 Site Built New Shell Measures w/Baseboard Heating Equipment Zone 3 <5 tons and >15 tons EER 9.5 to 11.0 Chiller upgrade Site Built New Shell Measures w/Forced Air Furnace Heating Zone 1 Glass: code to al36 Site Built New Shell Measures w/Forced Air Furnace Heating Zone 2 Glass: code to al40 Site Built New Shell Measures w/Forced Air Furnace Heating Zone 3 Site Built New Shell Measures w/Heat Pump Heating Zone 1 Glass: code to al45 Glass: code to vea Site Built New Shell Measures w/Heat Pump Heating Zone 2 Glass: codet to al36tint Site Built New Shell Measures w/Heat Pump Heating Zone 3 Glass: codet to al40tint Manufactured/Mobile Homes Retrofit Shell Measures w/Forced Air Furnace Heating Zone 1 Glass: codet to al45tint Manufactured/Mobile Homes Retrofit Shell Measures w/Forced Air Glass: codet to veat Furnace Heating Zone 2 Glass: codet to vet Manufactured/Mobile Homes Retrofit Shell Measures w/Forced Air Glass Retrofit: sngl to al36 CW Furnace Heating Zone 3 Glass Retrofit: sngl to al40 CW Manufactured/Mobile Homes Retrofit Shell Measures w/Heat Pump Glass Retrofit: sngl to al45 CW Heating Zone 1 Glass Retrofit: sngl to vea Manufactured/Mobile Homes Retrofit Shell Measures w/Heat Pump Glass Retrofit: sngl to al40 Heating Zone 2 Optimize/repair economizer/controller/t-stat Manufactured/Mobile Homes Retrofit Shell Measures w/Heat Pump Demand Control Ventilation where applicable Heating Zone 3 Site Built Retrofit Shell Measures w/Baseboard Heating Equipment Morning warm-up control logic Zone 1 Refrigerant charge correction Site Built Retrofit Shell Measures w/Baseboard Heating Equipment Coil Cleaning Zone 2 One-chiller baseline Site Built Retrofit Shell Measures w/Baseboard Heating Equipment Northwest Two-chiller baseline Zone 3 Under Floor Air Distribution Conservation Site Built Retrofit Shell Measures w/Forced Air Furnace Heating Zone 1 Dedicated Outdoor Air Supply (DOAS) puncil Site Built Retrofit Shell Measures w/Forced Air Furnace Heating Zone 2 VFD. VSD for fans Site Built Detrofit Shall Measures w/Forced Air Furnace Heating Zone 2

Di-Tadiani Convection over

Residential Hot Water Heating Dwelling Unit Supply Curve

What Is "Cost-Effective"?

- "Cost-effective," means that a measure or resource must be forecast:
 - to be <u>reliable and available</u> within the time it is needed
 - to meet or reduce the electric power demand of the consumers <u>at an estimated incremental system cost no</u> <u>greater than that of the least-cost similarly reliable and</u> <u>available alternative</u> measure or resource, or any combination thereof.
- Conservation's "<u>cost-effectiveness limit</u>" is set at or below <u>110%</u> of the cost of the next similarly available and reliable lower priority resource

Illustrative "Unit Level" Cost-Effectiveness Assessment

Simple Case – Residential Space Heating for New Manufactured Homes

Council Supply Curves

Outline

- Demand and conservation assessment
- Generating resources
 - Portfolio building

Council's Power Planning Process

Resource Costs: Long Term

Major Future Resource Options

	Application	Earliest Service	Capacity Cost (\$/kW/yr)	Energy Cost (\$MW)		
Gas combined-cycle	Energy Flexible Capacity	2014	\$136	\$60 + \$9		
Gas peaking units	Flexible Capacity Energy	2013	\$108	\$73 + \$12		
Wind	Energy	2011	n/a	\$76ª + \$0		
Coal gasification combined-cycle w/CSS	Energy Capacity	Ca. 2017	\$367	\$73 + \$2 ^b		
Nuclear	Energy Capacity	Ca. 2021	\$363	\$54 + \$0		
Solar-thermal (Import)	Energy Capacity (Limited)	2014	N/est.	N/est.		

- a) Class 6 (Good) wind site, no PTC, no transmission expansion cost.
- b) 90% CSS (50% CSS case to be developed)

Statutory Resource Constraints

- Renewable portfolio standards
 Mandated acquisition of certain resources
 End targets (sales-based):
 - MT 15% by 2015 (IOUs)
 - OR 25% by 2025 (large utilities)
 - WA 15% by 2020 (larger utilities)
- GHG emission performance standards

Long-term acquisition of baseload resources

OR & WA (& CA) - 1100 lbCO2/MWh

MT - 50% CO2 capture & sequestration (HB 25)

CO₂ Production Rates

Power Resource Risks

Costs and Considerations

- Construction Risk
 - Responding fast enough to capture value
 - Sunk siting and permitting costs
 - Construction materials cost
 - Mothball and cancellation costs
- Operation Risk
 - Fuel, maintenance, and labor costs
- Retirement Risk
 - Carrying the forward-going fixed cost of an unused plant
 - Undervaluing and retiring a plant that may have value in the future

Outline

- Demand and conservation assessment
- Generating resources
- → Portfolio building

Council's Power Planning Process

Resource Supply Curve

Resource potential for generic coal, gas & wind resources shown for typical unit sizethwest Power and Additional potential is available at comparable costs.

The Portfolio Model: A Different Kind of Risk Modeling

- Imperfect foresight and use of decision criteria for capacity additions
- Adaptive plans that respond to futures
 - Primarily options to construction power plants or to take other action
 - May include policies for particular resources
- "Scenario analysis on steroids"
 - 750 futures, strategic uncertainty
 - Frequency that corresponds to likelihood

Operating Costs

Background on the Efficient Frontier

- Because we face uncertainty, we need to find "*Plans*" that perform well over wide range of possible "Futures"
 - Futures -- possible combinations of hydro conditions, loads, fuel prices, market prices, CO2 penalties and so on over planning period
 - Plans types and amounts of resources and earliest "be prepared to start construction" dates (options)

...And a Bit More Abstractly...

- Futures circumstances over which the decision maker has no control that will affect the outcome of decisions
- Plans actions and policies over which the decision maker has control that will affect the outcome of decisions

Sources of Uncertainty

Load requirements Gas price Hydrogeneration Electricity price Forced outage rates Aluminum price CO₂ tax Production tax credits Green tag value (Renewable Energy Credit)

The Construction Cycle

 After an initial planning period, there typically large expenditures, such as for turbines or boilers, that mark decision points.

Modeling Cohorts

Each period can have a cohort of plants, usually of different size

- Each period can have a cohort of plants, usually of different size or capacity
- All cohorts will be affected by changing circumstances, but may be at different stages of development

Background

Resource Plan

Beginning of year	Additions in Megawatts							
	2008	2010	2012	2014	2016	2018	2020	2024
CCCT	0.00	0.00	0.00	0.00	0.00	610.00	1,220.00	
SCCT	0.00	0.00	0.00	0.00	0.00	100.00	800.00	
Coal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Demand Response	500.00	750.00	1,000.00	1,250.00	1,500.00	1,750.00	2,000.00	
Wind_Capacity	0.00	100.00	1,500.00	2,400.00	4,400.00	5,000.00	5,000.00	
IGCC	0.00	0.00	425.00	425.00	425.00	425.00	425.00	
Conservation cost- effectiveness premium over market	10.00	5.00						
avg New Conservation	443	746	1071	1416	1774	2020	2198	2500

These dates represent the earliest that construction would begin. All siting, licensing, and other preparation must be completed by these dates. The earliest in-service dates are 2 years later for CCCT, 1 year for SCCT, 3 years six months for Coal, and 1 year for Wind, due to construction time requirements. Wind energy assume a 30 percent availability. Turbines have 5 percent forced outages.

Distribution of Cost for a Plan Under Multiple Futures

Risk and Expected Cost Associated With A Plan

Feasibility Space

Increasing Cost
39
Background

Feasibility Space

← Increasing Risk

Increasing Cost
40
Background

